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The propagation of surface waves - that is ‘third ’ sound - on superfluid helium is 
considered. The fluid is treated as a continuum, using the two-fluid model of Landau, 
and incorporating the effects of healing, relaxation, thermal conductivity and 
Newtonian viscosity. Under the assumptions only of a small amplitude and long 
wavelength, a linear theory is developed which includes some discussion of the 
matching to  the outer regions of the vapour. This results in a comprehensive 
propagation speed for linear waves, although a few properties of the flow are left 
undetermined a t  this order. A nonlinear theory is then outlined (without dwelling 
on the details) which leads to the Burgers equation in an appropriate far field, and 
enables the leading-order theory to be concluded. 

Some numerical results, for two temperatures, are presented by first recording the 
Helmholtz free energy as a polynomial in densities. Owing to the inaccuracies 
inherent in this procedure, only the equilibrium state can be satisfactorily reproduced, 
but this is sufficient to predict the onset phenomenon. The propagation speed, as a 
function of film thickness, is roughly estimated by using the earlier results of Johnson 
(without healing) suitably doctored to incorporate the new computed superfluid 
density distributions. The looked-for reduction in the predicted speeds is evident, but 
the magnitude of this reduction is too large for very thin films. However, i t  is hoped 
that the analytical results presented here will prove more effective when a complete 
and accurate description of the Helmholtz free energy is available. 

1. Introduction 
Superfluid helium (or ‘helium I1 ’) is a quantum fluid which is produced when liquid 

helium is cooled below the A-point (a second-order phase transition at about 2.2 K). 
Virtually all the known properties of helium I1 can be explained with some 
considerable degree of success by representing the fluid as a mixture of two 
components : the so-called two-fluid model of Landau (Landau 1941 ; Landau & 
Lifshitz 1959; Hills & Roberts 1972). The two components are taken to  be the 
‘superfluid’, which moves irrotationally, and the ‘normal fluid’, which is a classical 
Newtonian viscous fluid. The helium vapour is usually treated as a viscous compressible 
gas (when the vapour is modelled at all), and this author will adopt the same view. 
We thus have the basis for a continuum theory describing the motion of superfluid 
helium. 

There are quite a number of different types of disturbance that can propagate in 
helium 11. These may involve a motion that is predominantly associated with the 
superfluid component, or with some appropriate coupling between the components. 



198 R. S.  Johnson 

(For a general background, and a discussion of the simpler modes of propagation, 
see Putterman (1974).) Each mode of propagation is given a number, and third sound 
is the designation of the disturbance on the surface of liquid helium 11. Third sound 
is therefore the analogue of the classical water-wave problem, although here the body- 
force potential is dominated by (or is solely given by) the van der Waals term. Of 
course, as might well be anticipated, the corresponding analysis for helium I1 is vastly 
more involved than that for water waves, and not only by virtue of the two-component 
character. The superfluid helium in general, and third sound in particular, enjoy a 
number of complicating features. Helium I1 itself requires a model which accommo- 
dates the phenomenon of ‘healing’, wherein the superfluid density drops to zero at 
an infinite potential barrier (such as a solid wall), and it is generally accepted that 
the same pertains at a free surface. For further discussion of this point see Sobaynin 
(1972) and Ginzburg & Sobaynin (1976). The governing equations must also include 
a constitutive relation which describes the conversion of superfluid to normal fluid 
(and vice versa), and which is, furthermore, a relaxation process. (In the equilibrium 
state there is only normal fluid a t  the h-point, and only superfluid a t  absolute zero.) 
The appropriate extension of Landau’s two-fluid equations to incorporate both 
healing and relaxation is given by Hills & Roberts (1977). 

At the free surface, apart from the usual kinematic and stress conditions (suitably 
amended to account for the effects of evaporation/condensation and healing), we also 
require an energy balance equation. This relates the heat transfer and latent heat 
to the difference in chemical potential across the surface. The temperature is, of 
course, to be continuous a t  the interface between vapour and liquid. All the relevant 
interfacial conditions between helium I1 and its vapour are derived in Hills & Roberts 
(1979). 

Third sound was first predicted by Atkins (1959) and then detected by Everitt, 
Atkins & Denenstein in 1962, albeit on rather thick films of helium I1 (up to about 
10 em). We are concerned here, in the main, with the thinner films in the range 5-100 A 
(1 A = m);  this corresponds to a thickness of not more than about 25 atomic 
layers (see Atkins & Rudnick 1970). The emphasis on thin films might seem to be 
a t  variance with the continuum approach that we are pursuing, but our interest is, 
after all, centred on very long waves and it is one of the surprises that a macroscopic 
theory can cope so well with what is essentially a quantum-and therefore 
microscopic - phenomenon. In  fact it will be shown that some success is achieved at 
thicknesses as little as 1i atomic layers. One of the purposes behind this analysis is 
to demonstrate the wealth of detail that is available in a suitably complete continuum 
theory. We would argue, therefore, that there is some virtue in delineating any 
limitations of these governing equations before rejecting them wholesale in favour 
of a fully microscopic theory. We cannot expect our equations to be an infallible 
representation of helium I1 in general, although, of course, our concern here is only 
with those questions that might arise in the description of third sound. 

Elementary theories of third sound, based on simplified governing equations which 
describe the essential character of the problem, are given by Atkins & Rudnick (1970) 
and Putterman (1974). A more detailed representation of the liquid and vapour - and 
its coupling - is to be found in Bergman (1969, 1971). However, this latter author 
does not make use of asymptotic methods, but rather he develops a solution based 
on ad hoc approximations : healing and relaxation are omitted and the equilibrium 
state is absorbed into average properties across the film. In  an effort to present a more 
systematic theory, Johnson (1978~)  constructed an asymptotic solution for the 
linearized problem describing small-amplitude long waves. Nevertheless i t  proved 
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expedient to describe the coupling to the vapour by a set of idealized interfacial 
conditions, and only compressibility of the liquid was retained in the numerical 
results presented for the propagation speed. Recently, Johnson (1984) has given a 
more complete specification of all the governing equations (for third sound), together 
with a brief discussion of various aspects of the problem. In the case of the one 
analysis - a linear theory - in which healing was retained, again the idealized surface 
conditions were employed, and so no detailed model of the vapour was utilized. The 
primary aim of this current work is therefore to remedy some of these shortcomings 
and endeavour to present a fairly comprehensive account of the linearized problem 
for third sound. The only simplifying assumptions will be those consistent with the 
propagation of small-amplitude long waves. Furthermore, it will also be possible to 
touch on the form of the nonlinear far field as well as the problem of matching to 
the vapour. 

We shall take the opportunity to present some numerical results, although these 
will be far from complete. At the present there is not readily available a wholly 
satisfactory model for the Helmholtz free energy A which can also be converted into 
a numerical form: this is necessary if the ultimate aim is to produce worthwhile 
comparisons with experimental data as well as reliable predictions. Consequently 
certain features of the problem must, perforce, be left in an analytical form (which 
in some cases will mean an ordinary differential equation, since some coefficients of 
these equations depend on A and, in particular, derivatives of A ) .  

The philosophy adopted here, being a continuation of that developed in Johnson 
(1984), is to construct the appropriate non-dimensional equations so that the 
parameters describing amplitude and wavelength appear explicitly. This is quite 
straightforward if all the physical coefficients are non-dimensionalized using the 
depth h of the film as the lengthscale: we treat h as fixed for a particular flow 
configuration, which makes good sense from the experimental standpoint. Introducing 
a typical wavelength h as the lengthscale along the film, we then obtain e (= typical 
amplitude/h) and S (=  h/A)  as the only parameters incorporating amplitude and 
wavelength. The problem of small-amplitude long waves is therefore obtained from 
e+O, S + O ,  whilst keeping all the other parameters fixed. The additional parameters 
will therefore include those associated with viscosity, thermal conductivity, healing, 
etc. (It should be noted that we may wish to examine special classes of problem for 
which e+O, S + O ,  but such that S = S(s) is specified.) 

It is out of place to recapitulate the background to the governing equations: the 
formulation and non-dimensionalization relevant to third sound are to be found in 
Johnson (1984; 1978a also, although less complete in this context). We shall, 
however, describe the notation employed and comment on one or two of the 
parameters that are introduced; this should be sufficient to make the equations 
fairly comprehensible. The full set of non-dimensional equations is reproduced in 
Appendix A. 

2. Equations and notation: a resume 
We have already commented on the choice of the depth h of the liquid helium layer 

as the principal lengthscale. Only the coordinate along the film, the time and the 
velocity potential for the superfluid are non-dimensionalized using a typical wave- 
length A. In addition we require a typical speed of the wave (c’, say) to complete the 
non-dimensionalization of the kinematic quantities. We may now begin by recording 
the coordinate system and other notation that is required. (All the variables 



200 R. S .  Johnson 

f‘ 
Vapour 

I 
\ \ Y \  \ c  

\ ‘ Solid phase X 

\ \ \ \  

FIGURE 1.  Defining sketch for flow configuration and variables. 

introduced hereinafter are non-dimensional, unless stated otherwise.) The rectangular 
Cartesian coordinates are (x, y), where y is measured across the film from the substrate 
(a solid layer) to the free surface, and t is the time. The velocity components are 
written as (uq, vq), where q = s, n denotes either the superfluid or the normal fluid. 
The surface perturbation is 7, and #s is the velocity potential. For the non- 
dimensionalization of the thermodynamic quantities we require a typical temperature 
(To, the equilibrium temperature) and an average total density of the liquid po. (It 
should be noted that the liquid is not assumed incompressible: the effects of 
compressibility cannot be ignored u priori since there is a large variation of pressure 
across the film, from about 0 to 25 a tm;  1 atm M 101 kPa.) We are now able to define 
the total density p ,  the component densities pq (q = n, s), pressure p and temperature 
T.  The Helmholtz free energy is written as a and the body force potential is w .  

The interface conditions require the chemical potential, mass flux across the 
surface, and the ratio of these two, to be defined in a suitable non-dimensional form. 
This yields $,j and v respectively, where the equation j = v$ (see (A 20)) is the chosen 
constitutive relation between $ and j. 

The helium vapour, denoted by the subscript g (for ‘gas’), can be described by 
non-dimensional variables as outlined above, with the exception that the average 
density is taken to be the corresponding vapour density pgo and the typical speed 
is c i .  Nevertheless the time is still non-dimensionalized with respect to c’. Thus we 
are able to define (ug, v g ) ,  p g , p g ,  Tg and ug just as for the liquid. Now, since the vapour 
and liquid variables are defined using different densities and speeds, ratios of these 
two quantities will appear in the governing equations. However, no limiting process 
is associated with these additional parameters (a = pgo/po; d = c i / c ’ ) ,  although they 
can be used to advantage if numerical estimates are desired from a given order in 
the asymptotic solution. The majority of these variables will be found on the defining 
sketch (figure 1) .  

The remaining physical parameters usually required for the description of a liquid 
and vapour, expressed in non-dimensional form, are : K ,  K~ (thermal conductivities) ; 
ai,a . (inverse Reynolds numbers; i = 1 ,  2 for the two viscosities). The properties 
peculiar to  helium I1 also have their associated parameters. If the healing coefficient 
is taken to be proportional to l / p ,  and that for the relaxation proportional to p;i 

g? 
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(see Khalatnikov 1970; Hills & Roberts 1977), then the parameters are /3 and y 
respectively. 

The final stage, before we are in a position to present the equations themselves, 
involves the appreciation that the surface wave disturbs a quite intricate equilibrium 
state. For both the vapour and the liquid this state is a function of y, with the 
exception of the temperature, for which T = Tg = 1 in equilibrium. The state of 
thermodynamic equilibrium is denoted by a circumflex, so that, in the absence of any 
disturbances, j 5  = $3(y), etc. If we now introduce the appropriate perturbation of this 
state, we may write 

T = 1+6&, Tg = 1 + 6 8 ' ~ ~ ,  j 5  = $3+~p,  ( 1 )  

p = b+w, jig = $3g+pg, pp = bp+crp, 

where q = s, n, g. These definitions are consistent with the governing equations, 
which, with this notation, appear in Appendix A. 

The equilibrium state is described by the equations recovered by setting the 
perturbation terms to zero; this yields 

for the liquid, where ci = a(b, bs, 1) .  (The Helmholtz free energy is usually expressed 
as a function of the total density, the superfluid density and temperature.) It is clear 
that the equations (2) are not independent: for example, the first three imply the 
fourth upon the elimination of $3 and w .  The vapour in equilibrium satisfies the 
equations 

where 6, = ag(bg, l) ,  and at the interface we have 

The boundary conditions that we must impose are that 

p^,=O on y = O , 1 ;  $3=rjb on y = O ,  ( 5 )  

where fib is the (non-dimensional) pressure a t  which helium I1 solidifies (at the 
temperature T = 1 ) .  I n  passing i t  should be noted that ( 2 b )  serves to  fix the arbitrary 
constant in the definition of Ci, as does ( 4 b )  for Ci,, given w(y). 

The conditions that pertain far from the surface and into the vapour (y -t 00) depend 
critically on the choice of o(y). If w(y) is represented solely by the term arising from 
the van der Waals force of attraction towards a solid boundary, then w takes the form 

" [l+k,(y+d)]-l ,  
(Y + d ) 3  

where k,, k2 are constants and d is chosen so that solidification (i.e. f? = rjb) occurs 
on y = 0. Now, since w+O as y+ 00, the vapour will approach a constant pressure 
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and density far from the surface: this seems most appropriate in view of the usual 
experimental configuration. On the other hand, if w(y) were to incorporate a 
gravitational contribution then the pressure and density would decrease upwards (if 
the film were condensed onto a horizontal surface), but this would be significant only 
a t  vast distances above the surface. We shall restrict our study to the case in which 
w is independent of gravity, and hence the flat surface on which the helium I1 is 
condensed may take any orientation. I n  the light of the comments above it is perhaps 
worth remembering that y is scaled on h, whence y+ co is to be interpreted as large 
with respect to the thickness of the film. 

An asymptotic solution is constructed which is valid as s+O and 6+0, although 
the precise ordering of the terms in the expansions cannot be determined unless a 
choice is made for 6 = a(€). Nevertheless, insofar as the underlying linearized problem 
is concerned, there is no necessity for imposing any restriction : the limiting process 
c+O,  6+0 - otherwise unspecified - will generate the (leading-order) equations 
relevant to small-amplitude long waves. If higher-order terms are required, and in 
particular if the nonlinear far field is to be examined, then 6 = 6 ( ~ )  must be fixed in 
order to limit the class of problems under discussion. Since the amplitude is O(e)  we 
can anticipate that the nonlinear far field will be evident on a timescale O ( e - l ) ,  and 
then the dominant effects associated with the long-wave parameter Swill arise a t  this 
same order if we set 6 = E .  I n  fact the parameter 6 plays a somewhat spurious role; 
it has arisen solely because we have opted to use two lengthscales, albeit on sound 
physical principles. For, if we introduce the transformation x+ S X / E  (and correspon- 
dingly for t ,  v9, 7, rg, @s) then, in essence, B replaces 6 for any 6. This property of the 
equations may be usefully interpreted as showing that, for arbitrary 6, there exists 
a lengthscale on which the dominant effects associated with 6 can be balanced against 
the nonlinear effects. (The terms involving 6 presumably generate dissipative and/or 
dispersive effects; the precise nature of these contributions will be made clear in $4.) 
We shall regard the special choice 6 = E as the most general problem associated with 
the limit process c+O,  6+0. That this special case is sufficient will be argued in due 
course, so that the other possibilities (6 = o ( E ) ,  E = o(6))  are, in all essentials, 
embedded in this one case. 

The procedure we adopt is to seek an asymptotic solution as E + O  (with 6 = E ) ,  

keeping all the other parameters fixed. In the first instance this will lead to a near-field 
(linear) theory, and then, by introducing suitable far-field variables, the nonlinear 
problem may be examined. Furthermore, it  will also be possible to see how the 
solution for the liquid (and the vapour near the surface) may be matched to the vapour 
far from the surface. It is to be expected that the solution for y = 0(1) will not be 
uniformly valid as y+ co , since the evaporation/condensation a t  the surface requires 
a recirculation of the flow for large y. For simplicity we shall construct a solution 
valid in the liquid (and in the vapour for y = O ( l ) ) ,  for both linear and nonlinear 
waves, in the most obvious manner, e.g. in integer powers of c .  We shall therefore 
presuppose that there does exist an appropriate solution as y-f co which matches the 
linear and nonlinear theory. The form that this matching must take, a t  least to 
leading order, will be briefly examined in order to afford some check on the validity 
of the assumption of existence. 

3. Linear theory 
A wave theory, certainly valid for y = O(1) ,  is obtained by seeking asymptotic 

expansions for all the dependent variables occurring in the governing equations. It 
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is sufficient, in the initial stages a t  least, to assume that, for x, t and y of U(1),  the 
variables may be written in the form 

Q = Q,+o(l)  as s+O, (6) 

where Q represents any one of T , T ,  us etc. However, when it  becomes necessary, we 
shall assume that (6) represents the first term of an asymptotic expansion based on 
the sequence {en}. The functions Qo depend on x, t and y or just x and t ,  the difference 
arising where the functions are defined only a t  the surface, but there is one exception: 
by virtue of the scalings consistent with small-amplitude long waves we have 

(7)  $s(x, t ,  y; 6 )  = B S ( X ,  t ; €1 + 0(E2) ,  

whence Oso = Oso(x, t ) .  
The linear equations are, for completeness, given below ; the zero subscript 

associated with the leading order is, however, omitted for ease of presentation 
(although it  will be retained elsewhere in the text to avoid any confusion). Reference 
to the appropriate equation in Appendix A appears to the left. For the liquid we 
obtain 

the subscripts on Ci. denote partial derivatives and the prime is the total 
derivative with respect to y. At the bottom of the liquid film we have the boundary 
conditions 

aT 
a Y  

u, = vn = 21, = 0, - = O  on y=O, (15) 

where the generally accepted condition of no heat t,ransfer across the solid/liquid 
interface is introduced. 
The corresponding leading-order problem for the vapour is described by 

a2u 

aY2 
(A 11)  A= 0, 
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At the free surface (that is, on y = 1 ,  to leading order) the vapour and liquid must 
satisfy the jump conditions : 

(A 15) P(.,-g) = crA&(v,-f%) (= $), 

j a7 a7 
€2 aY aY 

(A 18) -(A26,,-dT) = K---A~K 3, 

(A21) U ,  = Au,, 7 = 7,, (26) 

where the equilibrium state ( 3 b )  for the vapour has been used in (25). By virtue of 
(21) and (24) i t  is clear that  j = 0 ( c 2 ) ,  and from (A 20) we see also that @ = O(e2) ,  
which is then used in (A 19) to yield (25). 

The analysis of the above equations is, for the most part, quite straightforward, 
and so we shall mention only some of the points that  arise in their solution. The 
velocity components un0 and ugo turn out to take a very simple form, but only when 
the matching of ugo as y + co is invoked. We shall discuss the matching in a little 
more detail later, but to continue our description of the linear wave we shall make 
use of the appropriate solution at this stage. The only available solutions for ugo are 
either that  ugo is proportional to y as y+m, or that ugo is identically zero. The 
unbounded form is unmatchable, and so we obtain 

uno = ugo = 0. (27) 

This choice accords with earlier theories (see e.g. Bergman 1969) where un0 = 0 was 
usually an ingredient (‘only the superfluid moves ’), and then the vapour must satisfy 
ugo = 0 since i t  is ‘locked’ to  the normal fluid by the viscous stresses a t  the surface. 
The picture we are suggesting therefore involves the movement of the vapour- 
essentially normal - towards or away from the surface, this motion being driven by 
the condensation/evaporation. However, a t  large distances (y + co ) the relative 
magnitudes of v, and u, must interchange, allowing the recirculation of the vapour 
necessary to maintain mass conservation. 
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The pressures in the liquid and the vapour, a t  y = 1 ,  are determined from (22) and 
(25) and yield, for example, 

with a similar expression for p ,  on y = 1 .  It is evident from (28) that  we require the 
form of rso, and once this is known all the other variables follow directly. The equation 
for r ( ~ , t , y )  is obtained by eliminating ro  between ( 1 1 )  and (13), and if we write 
rso = ps(aBs,/at) F(y) ,  this gives so,, 

where c2 = (2df +$J1 is a measure of the compressibility of the liquid. (The 
incompressible limit corresponds to a^+ 0.)  The boundary conditions necessary for 
the complete determination of F(y)  require a little consideration. The equilibrium 
superfluid density bs behaves like Y2 as Y+0+, where Y = y or 1 - y (see ( 2 4  and 
( 5 ) ) ,  and also the tot,al ps is to be zero on y = 0, 1 +q. This would suggest that F(y)  
merely be bounded a t  y = 0, 1, but then 

ps = bs + wso + o(e) as 6 + 0 (30) 

would not be uniformly valid as y+0, 1 .  However, an examination of the full 
equations leads us to the conclusion that there are no boundary layers for y = O ( E ) ,  
1 - y = O(e) .  Consequently (30) must be uniformly valid, and so F ( y )  must (at  most) 
approach zero linearly as y+0, 1 ; (29) permits such a solution, and in the case of 
a nearly incompressible liquid (&+ 0) an approximate solution is easily constructed 
which exhibits this behaviour. 

It is now clear that  p,, r,, rso are each proportional to aO,,/at, and then the four 
equations (10)-(13) cannot be independent, for consistency. That all is well is 
confirmed by making use of the equilibrium state; this property is no more than a 
repetition of that enjoyed by the equilibrium equations themselves. For convenience 
we set 

where R,(y) is given by ( l l ) ,  whence 

with X, = b; F.  The pressurep, is obtained by integrating (10) and using the boundary 
condition on y = 1 (see (28), following). This perturbation pressure will now contribute 
to the pressure on y = 0, and will in actuality alter the position of the solid/liquid 
interface. Nevertheless there are no grounds for believing that the purely local and 
small ( O ( s ) )  variation in substrate thickness has any significant effect upon the 
passage or form of the wave. Hereinafter we shall assume the model in which the liquid 
is bounded by y = 0 and y = 1 + q, for all time, where y = 0 is treated as a solid fixed 
surface. 

The relation between Oso and 7, is easily obtained, for example, by evaluating (12) 
on y = 1 ,  where i t  then takes the form 

E@ = h , ~ , ,  
at 

(33) 
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where A, is an involved constant depending on So - and derivatives of So - evaluated 
at y = 1 .  There is no virtue in presenting the general form of A, here (see 
Appendix B) ; however, in the limit of an incompressible liquid, we obtain 

This result demonstrates how both healing (/3 + 0) and a vapour model (a  $: 0) play 
a role even in the absence of liquid compressibility. (It must be emphasized that, 
purely from numerical estimates, the compressibility effects are rather more significant 
than this new phenomenon since (+ is very small for helium 11.) 

The final stage in obtaining the equation of motion for the surface wave involves 
determining the contributions to the interfacial conditions. For the liquid this first 
requires the integration of (8) and (14) across the film to yield 

and 

using us, = ae,,/ax (and un0 = 0). It is evident that this leading-order theory does 
not produce, nor does it require, the dependence of w,, and 7, across the layer. These 
two functions are, nevertheless, completely determined a t  the next order, as the 
nonlinear theory will demonstrate. Correspondingly for the vapour, the relevant 
equations are to be integrated to give evaluations on y = 1 .  Although there is much 
to be said for attempting the integration from infinity, this turns out to be impossible. 
There is no automatic guarantee that the asymptotic expansions (of which (16)-(20) 
describe the first terms) are uniformly valid as y+ 1 (from infinity) ; furthermore, it  
is far from clear from a cursory examination that the leading order is even bounded 
as y+ 1 .  With these points in mind, we write 

and 

(38) 
a7 ar 

K - p + l i g  GgT vg = Pg + mg dgT1 -; J: @gT +p^gdgpT) 2 dy 9 

a Y  

from (16) and (20) respectively, where bg wgo = mg, K~ a ~ ~ , / a y  = qg both on y = 1, and 
hgT1 denotes dgT evaluated on y = 1.  For the purposes of obtaining the jump 
conditions across y = 1 we now require the (so-far unknown) functions mg and qg. 
However, mg can be found in terms of qo without recourse to the behaviour of the 
vapour at infinity; from (21) and (35) it follows that 

This can be interpreted as specifying the form of mg necessary to maintain the wave 
motion : the wave elevation/depression has an associated cooling/heating effect which 
drives the condensation/evaporation, which can only be maintained by an appropriate 
vapour flow to/from the surface. 
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The equation for qo(z, t )  is now obtained by eliminating j / s 2  between (21) and (24), 
and making use of (33), (35) and (36), to yield 

where the additional subscript 1 again denotes evaluation on y = 1. Equation (40) 
cannot be further determined without constructing a representation for qg, the heat 
transfer at  the surface arising from the flow of the vapour. Thus (40) constitutes the 
most general (linear) equation of motion for 7o that can be obtained from our theory : 
our further comments will specialize (40) somewhat. 

Some discussion of the vapour is now necessary, in particular as to its structure 
far from the surface where an appropriate 'outer' expansion is valid. To find where 
this outer structure exists we can note one or two properties of the solution of (16)-(20) 
as y+m. First, it  is clear from (18) and (19) that both pgo and rgo approach an 
ambient state (exponentially) as y+ co, and that both are proportional to v o / A 2  (see 
(28)). On the other hand we have that ego is proportional to y, and rgo to y2, as y-f co, 
and this algebraic behaviour leads to a breakdown when y = O(s-4). (It is also 
confirmed from the governing equations that this scale is consistent in the balancing 

B0 ' 
of appropriate terms.) Although we have argued in the absence of the terms in u 
their retention produces exactly the same breakdown but now with ug = O(E-2)) 
which does not generate a consistent balance in the full equations. The first term for 
ug is therefore sugl, which is O(1) in the outer region, and so the outer variables are 
defined by 

y = d Y ,  ug = u,, vg = dv , ,  (41) 

p ,  = j3,+dg, pg = pg+eRg, rg = l+eT, ,  

where the equilibrium state @,, 6,) is a constant with exponentially small correction 
terms (as €-to); see (2). It is not our aim here to give a completely detailed picture 
of the vapour: this would require being specific, for example, on the question of 
boundary conditions (if any) to be imposed for Y = O(1). To complete the description 
of (40) we merely require the form of q,, in particular its dependence on qo (and the 
parameters (T, A ) .  The equations valid in the outer region of the vapour, correct to 
O(s) ,  are 

(Note that here, as before, we have omitted zero subscripts on the dependent 
variables. ) 

8 O  
It is immediately clear that, to match, Pg must take on the ambient form of p 

(which is independent of y), and thus Pg contains a contribution 0 ( 1 ) ,  but not O(e2) 
as well, even though valid to O(E) .  We should remember that our choice is to construct 
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the basic expansion using the asymptotic sequence {en} (see (6) and 92). Thus from 
(42e), after introducing (42a, d ) ,  we obtain 

Tg = T,&, t, Y )  + O k ) ,  

which permits matching with ~ , a ~ , / a y  (see (38)) only if the term independent of y 
is set to zero, a necessity by virtue of the absence of a term O ( d )  in the expansion 
of 7g.  Hence from (38) we are able to determine qg as 

(43) 
1 -  A argOoo +"lm A a t  [ ( ' g T + 6 g g g p T - ' g T m ) ' g 0 - 6 g j g o o S i g p T m  rgOmIdy-~dgmagpTm at 

where the linearly increasing term in i3rg0/i3y has been removed, and otherwise the 
integrals in (43) are assumed finite; the subscript 00 denotes evaluation a t  the 
ambient state, y+ 00. It is convenient to rewrite qe so as to yield 

(44) 

where use has been made of (33) and the fact that  rgo K A L 2 q 0 ;  (43) essentially defines 
no (it is the contribution to qg from the flow of entropy in the vapour). Before the 
equation for yO(x , t )  is written down in its final form, i t  should be emphasized that 
alternatives to (43) could be found. It we introduce specific boundary conditions a t  
Y = O( 1 )  (or appropriate matching conditions if the boundary is at Y-l = o( i ) ) ,  which 
allow a term O ( d )  in the outer expansion, then we could arrange that qg = 0, for 
example. Of course, such a result would be exceptional and therefore not likely to 
be relevant to the experimental configuration. Nevertheless, within the limitations 
of the asymptotic expansions assumed here, we have produced (43) as the most 
reasonable choice : certainly any other possibility requires the boundary/matching 
conditions to force a term O(e5) into the expansions. 

The linear wave equation for yo(x, t )  is obtained by eliminating aq,/at between (44) 
and (40) to yield 

(The complete details of this equation can be found in Appendix B.) It is convenient 
to introduce the 'latent heats' 

1, = eT1 - A2iigTl, I, = hT1 - A2& g T m j  (46) 
and then a useful reduced version of (45) for small cr (with Z,, 1, fixed) gives a wave 
speed c ,  where 1 

w i ( z m - d T l )  6s dy 
(47) 

0 
c2 z 
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with A, = $iTps So + (a, + 6 d T p -  A2dgT,) R,. The wave speeds given by (47), and 
more completely as implied by (45), are generalizations of those given by Atkins & 
Rudnick (1970), Putterman (1974) and Johnson (1978a, 1984). The speed obtained 
from (47) is probably the most useful in practice since the value of c for helium I1 
is about and therefore the terms associated with the vapour density presumably 
may be ignored. The further restriction to nearly incompressible flow in the liquid 
involves So, R,+O (they are both proportional to 8; see (29) and (32)), whence 

essentially the ‘classical’ result (see Putterman 1974). Although it is certainly 
possible - and also perhaps reasonable - to offer simplified formulae (for c) on the 
basis of numerical estimates, that is not the thrust of the argument presented here. 
Equation (45) (and see Appendix B) gives a quite general wave speed which 
incorporates the effects of compressibility, healing and vapour flow; note that any 
consequences of the relaxation phenomenon are absent in the linear long-wave theory. 

Further details on the form that the vapour takes in the outer region can be 
obtained from (42). I n  particular the recirculation is evident if these equations are 
solved with a boundary condition V, = 0 on Y = Yo (or matching condition V,+O 
as Y+ 00) .  Nevertheless, as we have demonstrated, the complete resolution of the 
vapour problem is unnecessary if only the leading-order contribution qg to  the surface 
wave is required. Consequently we shall not pursue this analysis any further in the 
current presentation. 

4. A nonlinear theory 
The nonlinear theory under consideration here comes about as the natural 

extension to the linear theory. With the choice 6 = s already mentioned, and linear 
propagation a t  a speed c ,  where 

(see (45)), a far-field theory can be constructed in the usual manner by introducing 

6 = x-ct, Y = st. (48) 

The limit process s- t  0 will then generate a corresponding nonlinear equation 
describing ~ ~ ( 6 ,  F ) which will presumably incorporate a variety of contributions 
associated with the parameters that are held fixed. Because of the chosen form of 
limiting procedure, we are able to argue that the resulting equation is in some sense 
the most general one applicable to small-amplitude long waves on helium 11. Of 
course, many other equations are available - under other limiting procedures - but 
only a t  the expense of choosing more parameters to be appropriate functions of E ,  

an approach which is perhaps questionable on physical grounds. 
The complexities of the analysis suggested above are immediately evident: not only 

are the governing equations (to O(s2)) very involved, but in particular many 
additional nonlinear terms are produced by expanding about y = 1 those functions 
defined on y = 1 +q. There is very little virtue in obtaining explicitly all the 
coefficients of the equation for v0 ,  and in fact much of the work would eventually 
involve extensive computations. We shall therefore restrict ourselves to an outline 
of the form of the equation but indicate specifically how the viscous and relaxation 
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effects are represented in it.  The details of the many contributions to the nonlinear 
terms will be altogether suppressed although the existence of these terms will be 
noted. 

In  the region where y = O ( l ) ,  it is assumed that all the dependent variables may 
be expressed as asymptotic expansions of the form 

Q = Qo+&?1+0(e) 

as e+O. The leading order produces an identity since we are making use of the linear 
wave speed c but the next order then enables the equation for y o ( E , Y )  to  be 
determined. The method of solution follows the outline given in 53, but now with 
the bonus that vno, 7. and vso are also completely determined. Thus, for example, we 
can find p ,  and pg l  a t  the interface, and if we eliminate p , ,  rl and rsl between the 
O(c)  equations obtained from (A 3)-(A 6) the resulting consistency condition defines 
vno. This corresponds to the interdependence of the four equations (10)-(13). The 
equation for vn0 is 

with the boundary conditions 

vnO = 0 on y = 0, vno = (c2Ro-$s)dy on y = 1 ,  (50)  

this latter condition being just (35). Now (36) can be used to obtain 70,  and then vso 
is deduced from (8). Equation (49) is a generalization of that given by Johnson (19786) 
for a related problem in heat transfer a t  a boundary. To make this comparison we 
consider the incompressible limit ( ro ,  rso + O ,  ;+constant) in the absence of healing 
(whence all the coefficients are constants), yielding 

The lengthscale associated with the solution of this equation is 

which is itself a generalization of the Clark thickness (see Roberts & Donnelly 1974; 
Johnson 1978b). In  other words, the normal velocity component across the layer, to 
leading order, incorporates all the effects in our model : heat conduction, viscosity, 
relaxation and healing (because the coefficients depend on y).  Other than using the 
simplifications indicated above, we can solve (49) only numerically given appropriate 
thermodynamic data. 

As with the near-field (linear) theory, the analysis is fairly straightforward once 
rsl has been determined, although the details of the outer region of the vapour and 
its matching could prove tiresome. (Since our concern can only be with the 
generalities surrounding the far-field theory, the problem of the vapour will be 
avoided by introducing certain simplifying assumptions to be mentioned later.) The 
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equation for rsl is obtained by eliminating rl between the appropriate forms deduced 
from (A 4) and (A 6), giving rise to the equation 

where 

and 

The term C,(y)qt represents the nonlinear contribution to the equation, and the 
equation is to be solved subject to rsl+O as y+O, rsl+-$qg& as y-f 1. From the 
solutions for vno, 7, and vso (which we suppose are available) we can observe that both 
70 and vs0 are proportional to i3qo/a(, and thus we express the solution of (51) in the 
form 

where XIi = Xli(y), and the term X,, arising from the relaxation process is isolated. 
Note that, although p ,̂ +O as y+O, 1,  m, remains finite in these limits. Corresponding 
to (31), we have a similar solution for rl : 

where Rlt = R,,(y). The relationship between O,, and 7, derives from p 1  evaluated 
on y = 1 (cf. (33)) which may be expressed as 

(54) 
-c- aes1 = A a*so a7 

11 71 + h,W+ ( 4 3  + 7 4 4  + (a, + a 2 )  Alt4 + A16 5% a6 a6 
where the A,$ are constants, and the terms associated with relaxation and viscous 
dissipation have been noted. At this stage it should be remembered that the linear 
theory implies the identities S,, = So, R,, = R, and A,, = A,; further, the relation 
between 8,, and 7, in the far field is (see (33)) 

ae 
a6 

-c-@ = Aoyo.  (55)  

Finally, combining the relevant forms of the equations of mass and energy 
conservation, and introducing the free-surface boundary conditions, we obtain 
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where K,  is a constant. The heat transfer to/from the gas a t  the free surface is defined 

which is to be compared with (38), following. To obtain the evolution equation for 
qo, apart from substituting for the functions ro, rso, ro, rl and rsl (which we assume 
are known) into (56), requires some knowledge of unl, us. and qgl. Of course 
usl = %?,,/a<, and all the terms in Osl and ql will anyway cancel identically by virtue 
of the linear theory. The general form of u,, is easily obtained as 

and we again assume that Ul(y) is uniquely determined by the boundary conditions 
on y = 0, 1 (which involve ugl, and so successful matching to the outer regions of the 
vapour is also implied). The explicit dependence on the viscosity is incorporated (see 
(57)) so that the consequences of allowing ct2 + 0 may be investigated. For simplicity 
we shall take qgl = 0, and then (56) can certainly be written in the form 

where K and ci are constants. Thus the small-amplitude long wave on helium I1 
satisfies the Burgers equation in the far field, although expressions for the constants 
in (58) are not readily available. 

We have attempted here'mainly to outline the argument underlying the development 
of the nonlinear theory. If the analysis justifies further examination, and suitable 
thermodynamic data are available, then the detailed coefficients required for (58) can 
be obtained. The important aspects of the analysis are, first, the observation that 
in an appropriate neighbourhood of the wave front the Burgers equation is always 
relevant, and, secondly, that a2+0 is a singular limit. This latter point is hardly a 
surprise since a crucial feature of third sound is the essentially stationary character 
of the normal fluid, i.e. the viscous forces predominate. This means, of course, that 
any theory of third sound which attempts to ignore the viscosity of the normal fluid 
in a nonlinear theory is open to some criticism. It is clear that  no further useful 
information can be gleaned from this nonlinear theory without extensive and tedious 
analysis. 

5. Some numerical results 
The point was made in $ 1  that only a modest amount of numerical work can be 

realistically undertaken a t  the present time. The extremely involved nature of the 
thermodynamics of helium I1 means that i t  is not a t  all straightforward to represent 
it in a suitable numerical form. Thus, although predictions for the wave speed c are 
of considerable interest, even these can not yet be found with any reliability when 
all the effects discussed here are retained. We shall therefore present only a few 
results, but they will contain a measure of dependability. However, for completeness, 
some estimates for the wave speed will be mentioned. I n  the long term it is hoped 
that the theory discussed here will be tested by the use of accurate expressions for 
the Helmholtz free energy (and its derivatives). Certainly, if simplified models for 
A(p,  ps, T) are of interest, then the calculations should be fairly straightforward. 
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The Helmholtz free energy A - the fundamental thermodynamic quantity - is 
modelled as a polynomial of degree seven in both p and ps, at fixed temperature. This 
was accomplished by applying ' best-fit ' routines to the data of Brooks & Donnelly 
(1977), and that of Donnelly, Hills & Roberts (1978, private communication). The 
former paper is concerned only with helium I1 in its bulk state, so that A does not 
vary with ps at fixed p and T. The latter work gives the variation of A with ps, but 
only A ,  and also a t  rather large increments in temperature. Thus, although data for 
A ,  and AT, are directly available for the bulk liquid, the same cannot be said of 
the general liquid. The polynomials turned out to be sufficiently accuratet to allow 
differentiation with respect to p and ps (and checks were performed against the more 
complete data for the bulk liquid). It is of course the restriction on the polynomials, 
being at  fixed temperature, which ultimately limits what we can do numerically. 

The polynomial description for A was used in (2) to find the equilibrium state of 
the liquid layer. This involved an iteration procedure through the equations together 
with an iteration on (2d) to determine bs(y). The calculations were performed a t  fixed 
temperature and for a given film thickness h, using the appropriate pressure boundary 
conditions. The method also required the thickness of the solid phase to be determined 
as well as p^(y) through the layer; the integration to find bs(y) was accomplished by 
a Newton-Raphson-Kantarovich routine. This whole procedure, although rather 
involved, proved to  converge rapidly and was insensitive to the initial guess for bs(y), 
provided this was not too near zero. (The calculation was usually initiated by setting 
b,(y) equal to  the bulk value a t  the given temperature, even though the guess did 
not satisfy the boundary conditions on y = 0, 1 ; other guesses were also used to test 
the sensitivity.) 

Now the integration for bs gave rise to an interesting and exceptional situation 
which has implications in view of certain observations related to thin films. For 
sufficiently thin films the residual (which measures the rate of convergence) increased 
for the first few iteration loops, rather than decreasing significantly as happened for 
all other film thicknesses. The solution then moved towards p ,̂(y) = 0, eventually 
converging quite rapidly to this solution. It is clear that (2d) has the zero solution 
(and hence the reason why the initial guess for bs(y) must not be too close to zero). 
This result suggests that, for h less than some critical value h,(T), a non-zero solution 
for p̂ , does not exist. When a critical value was suspected, great care was taken in 
the initial guess forbs(y) - for example, by starting with the solution already obtained 
for a slightly larger value of h. This enabled the value of h, to be isolated within fairly 
narrow bounds. Moreover the existence of only the zero solution for h < h,, far from 
being alarming, is definitely a success for the continuum theory as we shall see. 
Typical results obtained from the numerical work are given in figures 2, 3 and 4, 
showing the superfluid density distribution, the total density and the superfluid 
fraction defined by 

n i fl 

(when expressed in non-dimensional variables). All the calculations were undertaken 
for two temperatures : 1.3 and 1.8 K. 

Although it  is beyond our reasonable means to compute accurate predictions for 
the wave speed c, it  behoves us to make some mention of what is - after all - intrinsic 
to third sound. The best we can offer is an  estimate for c based on the calculations 

t In terms of variables normalized with respect to maximum values the root-mean-square error 
was kept below 
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FIGURE 2. The equilibrium superfluid density at T = 1.3 K for three 

film thicknesses: 10, 15, 20 A. 
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Y (A) 
FIGURE 3. The total density as a function of depth for a film thickness of 20 A at two 

temperatures: T = 1.8 K (-), T = 1.3 K (--). 

of Johnson ( 1 9 7 8 ~ )  (these incorporate compressibility but not healing) and then to 

introduce our current values for Cs dy, which do include healing. In  other words the 

terms in c (as implied by (45): see Appendix B) that arise from both healing and 
compressibility are ignored (i.e. So = 0) ,  and we shall also assume that is negligibly 

J: 
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small. These wave speeds are shown in figures 5 and 6, together with the speeds 
without healing and the experimental data deduced from Putterman (1974) at 
roughly comparable temperatures. 

I I I I 
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6.  Discussion 
It has been demonstrated that, although in places quite involved, a linear theory 

for third sound can be developed under minimal assumptions. The waves of 
interest - small amplitude, long wavelength - have been isolated without the necessity 
of imposing any limiting process on the other parameters. In this sense we have 
presented a general theory, and a similar comment applies to the coupling between 
the liquid and the vapour. The character of the coupling is obtained on the basis of 
an appropriate, and rather general, matching condition. If we turn to the nonlinear 
theory, then, particularly because of the healing terms, it can be described only in 
outline, but this is sufficient to indicate the relevance, perhaps not surprisingly, of 
the Burgers equation. (Various simple special cases were examined to check the sign 
of the diffusivity: it was positive in all cases considered.) 

The point was made earlier that all relevant choices of 6 = S(s) are essentially 
embedded in this single far-field theory. On the one hand this statement can be made 
precise by remembering that S is always removable by a suitable scaling. Thus there 
exist time and distance scales for arbitrary 6, for which the Burgers equation is valid. 
We could equally argue that, if 6 = 0(6), then with F = St, 6 = O(1) we obtain the 
heat-conduction equation, which has decaying solutions obviating the balance with 
nonlinearity. Of course, nonlinear terms are still relevant on longer time and distance 
scales. Similarly, if S = o(E) ,  then with F = st, f = O(1) it is clear that we shall 
generate the unidirectional nonlinear wave equation (without diffusivity), but then 
the Burgers equation is valid on shorter lengthscales as the wave steepens. On the 
foregoing it seems eminently reasonable to describe the Burgers equation as the 
generic equation for the evolution of small-amplitude waves in third sound. Never- 
theless, other far-field nonlinear theories are available by suitably choosing the 
€-dependence of other parameters (see Johnson 1984). However, it is also clear that 
a far-field theory that ignores the viscous terms at  the expense of, say, dispersive 
terms must be constructed with some care. This is simply because these viscous terms 
appear in the form l /a2,  which suggests a non-uniformity as a2+0 (the natural limit 
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FIGURE 5.  The propagation speed against film thickness at T = 1.3 K:  estimate with healing 

(---.) , no healing (--); experimental (-) at T = 1.315 K. 

to impose to remove viscous but retain other terms). These very particular difficulties 
are beyond the scope of the current study. 

The numerical results based on the analytical work presented here fall naturally 
into one of two categories, and for two quite separate reasons. The first contains the 
equilibrium state of the liquid film in the absence of waves, and this aspect has been 
determined quite accurately. The second category includes the wave properties, of 
which only the wave speed has been estimated, and then only very crudely. 

The effects of healing, which are dominant over any other when we compare our 
results with the ‘classical’ theory (Atkins & Rudnick 1970), are most evident in the 
equilibrium superfluid density. The typical density distributions (figure 2)  show the 
distinct ‘healing layers’ near y = 0, 1 for the films of medium thickness. However, 
for very thin films (somewhat less than 15 b, say) the maximum superfluid density 
is well below the bulk value, and then healing is significant throughout the layer. This 
is particularly clear in the superfluid-fraction versus film-thickness curves (figure 4). 
The occurrence of the zero solution for bs(y) also manifests itself in this figure; this 
phenomenon is usually referred to as ‘onset’. 

Experimental studies with thin films (e.g. Chester & Yang 1973) have led to a better 
understanding of the onset region, showing in particular that there is no superfluid 
present below a critical thickness (which of course varies with temperature). Our 
calculations show that the superfluid fraction is certainly zero at 5 but not a t  7.5 b 
(for T = 1.3 K), and zero at 10 b but not a t  12.5 b (for T = 1.8 K). A more precise 
estimate of the critical thickness was not undertaken owing to the immense amount 
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FIGURE 6. The propagation speed against film thickness at T = 1.8 K :  estimate with healing 
( - - - - )  , no healing (--); experimental (-) at T = 1.778 K. 

of computer time involved in these integrations. From Chester & Yang (1973) the 
thickness of the layer a t  onset is 7.1 a t  1.808" 
(taking one atomic layer to be 3.6 A). The computed values shown in figure 4 compare 
quite favourably with these experimental values (but note that the temperatures do 
not correspond precisely). This can be reasonably interpreted as a success for the 
continuum theory, with healing included. 

The fact that  equation ( 2 d )  for FS(y) predicts the onset phenomenon is, itself, not 
a t  all surprising. This equation is akin to equations with elliptic-function solutions, 
for which i t  is well known that a zero solution is the only available one in certain 
circumstances. More specifically, i t  is reasonable to expect that  GS(y) E 0 if 
$,(h) = Fs(0) = 0 and h < h, for some h,. A particularly simple case can be tested 
directly by modelling the Helmholtz free energy as 

a t  1.275", 8.1 A at 1.355", and 10.8 

where a,,a, and pso are constants (this latter being a measure of the bulk value of 
$J. Equation ( 2 4  can now be integrated in terms of elliptic functions and the onset 
exhibited. 

Another aspect of some note is that the agreement between the theoretical and 
experimental results is evidence for zero superfluid density both at  the free surface 
and in the solid layer below the solid/liquid phase transition. The slight doubt 
concerning the specific boundary conditions to be used on y = 0, 1 ,  and whether 
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experimentalists measure any superfluid in the solid layer, have been areas of some 
uncertainty in recent years. 

The total density distribution is shown in figure 3, and this is included essentially 
to demonstrate the effects of compressibility. These are particularly noticeable near 
the wall, where the vander Waalsforceisvery high. Thus, typically, the compressibility 
of helium I1 can be regarded as significant in a restricted region (say 5-10 thick) 
in the neighbourhood of the wall. In  other words, for films that are less than about 
10 thick, we can expect that compressibility is an important factor throughout the 
layer, whereas for films in excess of 100 f i  it  is relatively unimportant. 

The main thrust of the work presented here is to describe how the linear theory - and 
in outline the nonlinear - can be developed on the basis of fairly weak assumptions. 
However, it would be churlish to ignore any numerical estimates of the propagation 
speed c itself. As we have seen, the equilibrium state can be determined with some 
reasonable accuracy, although the same cannot be said of c, at least not with the data 
currently available to the author. The results shown in figures 5 and 6 are for the 
two temperatures under discussion (1.3 K, 1.8 K), and include the experimental 
curves quoted by Putterman (1974). Also included in the figures are the curves 
obtained from Johnson (1978a), which do not incorporate healing. Put a t  its simplest 
level it was expected that the effects of healing would slightly reduce the values of 
c ,  a t  least for the thinner films, and so bring them into line with the experimental 
results. The reduction is all too plain: our cavalier use of the updated superfluid 
density with the otherwise undoctored values from Johnson (19784 is extreme. The 
tendency is in the right direction, and so it is to be hoped that all the additional terms 
available in our theory (particularly the effects of healing in the perturbed state) will 
alleviate - but not reverse - this trend. 

In  conclusion we address the question as to the efficacy of the continuum equations 
used here to describe third sound. It must be said that the evidence presented in the 
foregoing paragraphs does not constitute a conclusive case one way or the other. The 
equilibrium state has been represented with considerable success and the predictions 
of onset are very much an unlooked-for bonus. However, the modelling of third sound 
a t  this level of sophistication is still very much an open question. The introduction 
of healing, relaxation, etc. cannot be fully exploited until the numerical problems 
have been overcome, but this is not a difficulty in principle. It should not be long 
before a sufficiently detailed and accurate representation of the Helmholtz free energy 
is available. Nevertheless the continuum equations in general - and the modelling of 
third sound in particular-may immediately prove a useful tool in the study of 
simplified models for A(p ,p , ,  T) for which the numerical work is straightforward. 

The author would like to extend his thanks to  Professor R. J. Donnelly, Dr 
R. N. Hills and Professor P. H. Roberts for their continued interest in this work and 
for making available their calculations on the thermodynamics of superfluid helium. 
The author is also very grateful to Dr C. A. Jones, of this department, for providing 
a suitable integration routine. The numerical work was performed on the IBM 
370/168 machine at the University of Newcastle upon Tyne. 

Appendix A 

non-dimensional variables. 
Here we produce the governing equations and boundary conditions written in 



Third sound: propagation of surface waves on superjuid helium 219 

x-momentum : 

y-momentum : 

Irrotationality : 

a4 +w+E~+f€2[U~+s2w;-(u,-u~)~-s~(w,-ws)2] at 

p s + m  

- “’ ~ + ~ [ u s ( $ s + ~ r s ) ] + - [ w s ( $ s + c r s ) ] ~  a a = 0. (A 4) 
1+8n 

($s + 4 a Y  

aP 3Ps ax2 a Y  

State : 

/?(!$+e%). (A 5 )  @ + ep = ($+ ~ r ) ~  - + ($+ er) (GS + erg) -- eS2/3-- 
aa aa a2rs 

Constitutive : 

ax2 1 aa P d2$, a2r, 
3 P S  Fs + m, [ dy2 ay2 ($+ er) -+!#[(u, + s2 (w, - w,)~] -~ -+ e- + 8 

+- 1 P  
2 ($s + E T S Y  

a a “’ r3+- 
(,bs++rs) at as + er,)] + - a Y  [ws(,bs + er,)]}  = 0. (A 6) + 

8 F L M  143 
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Energy : 

Boundary conditions on y = 0 :  

un = vn = vs = 0 on y = 0, 

aT/ay = 0 on y = 0. 

Equations for the vapour 

Mass : 

(A 10) 
1 ar a a 
-A + - [ug(bg + erg)]  + - [ w g ( f i g  + erg)]  = 0. 
A at ax a Y  

i a  a a 
z-momentum : 

- - ~ ~ g ~ P ^ g + ~ ~ g ~ l + ~ - ~ ~ : ~ P ^ g + ~ ~ g ~ l + B a y ~ ~ g ~ g ~ b g + ~ ~ g ~ l  A at ax 

y-momentum : 
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Interfacial conditions across y = 1 +q (tan 8 = ~daq/ax)  
Mass : 

-- 3 -  = e8da(bg+wg) 
cos 8 

Tangential stress : 

Energy balance : 

(A 18) 
Difference in potential : 

8-2 



222 

Constitutive : 

R.  S.  Johnson 

j = v*, 
Continuity: 

Appendix B 
The linear wave equation describing the propagation of third sound is expressed 

&S 

with 

where 
PW 

and 

We have written rg0 = yo A-2Rgo(y), and the subscripts 1 and 00 denote evaluation 
on y = 1,  co respectively. The latent heats are defined by 

1, = & ~ ~ - d ~ h ~ i g ~ ~ ,  I ,  = & ~ ~ - d ~ d ~ ~ ~ .  
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